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Introduction

Introduction

This module discusses the three indeterminacies of factor analysis.
We begin with a discussion of the basic equations of the common factor model.
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The Common Factor Model

The Common Factor Model

The unequivocal support that Spearman sought for his “theory of g” fueled his
enthusiasm for the common factor model.
At the random variable level, the m-factor model states that

x = Λξ + δ (1)

with
E (ξξ′) = Ψ, E (ξδ′) = 0, E (δδ′) = U2 (2)

where U2 is a diagonal, positive-definite matrix, Λ is the common factor pattern, Ψ the
factor intercorrelation matrix, and U2 contains the unique variances of the variables on its
diagonal.
If Psi is an identity matrix and the factors are uncorrelated, we say that the solution is
orthogonal, otherwise it is oblique.
Generally the diagonal of Ψ is assumed have all 1’s, since the common factors, as latent
variables, can be standardized to any desired variance. (Why? C.P.)
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The Common Factor Model

The Common Factor Model

The model of Equation 1, along with the appropriate side conditions, is sometimes
referred to as the “factor model at the random variable level.”
If this model fits the data, then a simple consequence is

Σ = ΛΨΛ′ + U2 (3)

Equation 3, the “fundamental theorem of factor analysis,” allows one to test whether the
m-factor model is tenable by examining whether a diagonal positive definite U2 can be
found so that Σ−U2 is Gramian and of rank m.
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The Common Factor Model

The Common Factor Model

There were two elements of the factor model that, if identified, could provide substantial
practical benefits.

1 The “factor pattern,” Λ, by revealing the regression relationships between the observed
variables and the more fundamental factors that generate them, could provide information
about the structure of the variables being investigated.

2 sample equivalent of ξ would provide scores on the factors, which would serve as a purified
measure of a vitally important construct.

If, for example, the factor model fit a set of mental ability tests, one could determine a
small set of underlying mental abilities that explain a larger number of tests, and the
ratings of the test takers on these fundamental abilities. Indeed, Hart and Spearman
(1912) envisioned a virtual factor analytic utopia.
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The Common Factor Model

The Common Factor Model

Indeed, so many possibilities suggest themselves that it is difficult to speak freely
without seeming too extravagant . . . It seems even possible to anticipate the day
when there will be yearly official registration of the “intellectual index,” as we will
call it, of every child throughout the kingdom . . . The present difficulties of picking
out the abler children for more advanced education, and the “mentally defective”
children for less advanced, would vanish in the solution of the more general problem
of adapting education to all . . . Citizens, instead of choosing their career at almost
blind hazard, will undertake just the professions really suited to their capacities. One
can even conceive the establishment of a minimum index to qualify for parliamentary
vote, and above all for the right to have offspring. (Hart & Spearman, 1912, pp.
78–79)
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The Common Factor Model

The Common Factor Model

Unfortunately, it turned out that there was a hierarchy of indeterminacy problems
associated with the factor analysis algebra presented above.
Rather than discuss the problems in the clear, systematic way that simple accuracy would
seem to demand, authors committed to the common factor model have generally omitted
at least one, or described them in obscure, misleading cliches.
I describe them here, and urge the reader to compare my description with treatments of
the factor model found in many other texts and references.
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The 3 Indeterminacy Problems Identification of Unique Variances

The 3 Indeterminacy Problems
Identification of Unique Variances

Identification of U2. There may be more than one U2 that, when subtracted from Σ,
leaves it Gramian and of rank m. This fact, well known to econometricians, and described
with considerable clarity and care by Anderson and Rubin (1956), is not described clearly
in several factor analysis texts.
One reason for the confusion may be that necessary and sufficient conditions for
identification of U2 have never been established, and there are a number of incorrect
statements and theorems in the literature.
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The 3 Indeterminacy Problems Identification of Unique Variances

The 3 Indeterminacy Problems
Identification of Unique Variances

There are some known conditions when U2 is not identified (described by Anderson and
Rubin).
For example, U2 is never identified if either p = 2 and m = 1, or if p = 4 and m = 2.
On the other hand, if the number of variables is sufficiently large relative to the number
of factors so that (p −m)2 > (p + m), then U2 will almost certainly be identified.
However, if any column of Λ can be rotated into a position where it has only 2 non-zero
elements (see discussion of rotation below), then U2 will not be identified.
This means that the identification of U2 can never be determined in purely exploratory
factor analysis simply by counting the number of observed variables and the number of
factors.
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The 3 Indeterminacy Problems Identification of Unique Variances

The 3 Indeterminacy Problems
Identification of Unique Variances

Example (Unidentified U2)

Consider the following correlation matrix:

R =

[
1.00 0.25
0.25 1.00

]
Suppose we wish to fit a single common factor model to these data. The model will be of the
form

R =

[
1 r
r 1

]
= λλ′ + U2
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The 3 Indeterminacy Problems Identification of Unique Variances

The 3 Indeterminacy Problems
Identification of Unique Variances

Example (Unidentified U2)

In this case, the model is so simple, we can solve it as a system of simultaneous equations.
Specifically, you can show that, for

λ =

[
λ1

λ2

]
,

any λ1 and λ2 satisfying
λ1λ2 = r ,

and also satisfying the side conditions that

0 < λ2
i < 1, i = 1, 2

will yield an acceptable solution, with diagonal elements of U2 given by

u2
i = 1− λ2

i
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The 3 Indeterminacy Problems Identification of Unique Variances

The 3 Indeterminacy Problems
Identification of Unique Variances

Example (Unidentified U2)

So, for example, two acceptable solutions, as you may verify, are

λ =

[
.5
.5

]
, U2 =

[
.75 0

0 .75

]
and

λ =

[
3/4
1/3

]
, U2 =

[
7/16 0

0 8/9

]
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Rotational Indeterminacy of Λ. Even if U2 is identified, Λ will not be if m > 1.
Suppose, for example, we require m orthogonal factors. If such a model fits, then
infinitely many Λ matrices will satisfy Σ−U2 = ΛΛ′, since ΛΛ′ = Λ1Λ

′
1 so long as

Λ1 = ΛT, for any orthogonal T.
If one allows correlated common factors, then even more solutions are possible. Starting
from a given Λ, such that x = Λξ + δ, we see that it is also true that x = Λ1ξ1 + δ,
where Λ1 = ΛT (for any nonsingular T) and ξ1 = T−1ξ.
Thurstone “solved” this very significant problem with his “simple structure criterion,”
which was essentially a parsimony principle for choosing a Λ that made the resulting
factors easy to interpret.
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Thurstone concluded that the common factor model was most appropriately applied
when, for any given observed variable, the model used only the smallest number of
parameters (factors) to account for the variance of the variable.
Simple structure meant that a “good Λ” should satisfy the following (in an m-factor
orthogonal solution):

1 Each row of Λ should have at least 1 zero.
2 Each column of Λ should have at least m zeros.
3 For every pair of columns of Λ, there should be several “nonmatching” zeros, i.e., zeros in

different rows.
4 When 4 or more factors are obtained, each pair of columns should have a large proportion of

corresponding zero entries.
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

In the early days of factor analysis, rotation of the initial Λ with more than 2 columns to
a “best simple structure” Λ1 = ΛT was an art, requiring careful calculation and
substantial patience.
Development of “machine rotation” methods and digital computers elevated factor
analysis from the status of an esoteric technique understood and practiced by a gifted
elite, to a technique accessible (for use and misuse) to virtually anyone.
Perhaps lost in the shuffle was the important question of why one would expect to find
“simple structure” in many variable systems.
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Example (Rotational Indeterminacy)

Suppose you factor analyze 6 tests, 3 of which are supposed to be measures of verbal ability,
and 3 of which are supposed to be measures of mathematical ability. You factor analyze the
data, and are given an “unrotated factor pattern” that looks like the following.

Λ =



.424 .424

.354 .354

.283 .283

.424 −.424

.354 −.354

.283 −.283
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Example (Rotational Indeterminacy)

It looks like all 6 of the tests load on the first factor, which we might think of as a
“general intelligence factor,” while the 3 verbal tests (in the first 3 rows of the factor
pattern) load negatively on the second factor, while the 3 mathematical tests load
positively.
It seems that the second factor is some kind of “mathematically and not verbally
inclined” factor!
Of course, there are, as we mentioned above, infinitely many other factor patterns that fit
the data as well as this one, i.e., produce the identical product ΛΛ′.
Simply postmultiply Λ by any 2× 2 orthogonal matrix T, for example, and you will
obtain an alternative Λ1 = ΛT.
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Example (Rotational Indeterminacy)

The family of 2× 2 orthogonal matrices is of the form

T =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
where θ is the “angle of rotation.”
To see where the term “rotation” comes from, suppose we draw a plot of the 6 variables
in “common factor space” by using the factors as our (orthogonal) axes, and the factor
loadings as coordinates.
We obtain a picture as in the figure on the next slide. Note that, in this picture, you can
read the factor loadings for any variable by simply reading its coordinates on the two axes.
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Example (Rotational Indeterminacy)
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The 3 Indeterminacy Problems Rotational Indeterminacy

The 3 Indeterminacy Problems
Rotational Indeterminacy

Example (Rotational Indeterminacy)

In this graph, the red vector represents Factor 1, and the blue vector represents Factor 2.
The 6 observed variables have been projected into the plane spanned by the two common
factors.
The factor loadings are represented by the projection of these 6 points onto the respective
factors.
Now we’ll digress with a demonstration hand rotation to simple structure in R.
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Factor Indeterminacy. The early factor analysis often spoke as if each factor pattern was
associated with a single set of factors.
It turned out this simply wasn’t so.
If the first two problems are overcome, a third one remains. Specifically, the common and
unique factors ξ and δ are not uniquely defined, even if Λ and U2 are.
To see this, suppose the factors are orthogonal, and so Ψ = I.
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Then consider any ξ and δ constructed via the formulas

ξ = Λ′Σ−1x + Ps (4)

and
δ = UΣ−1x−U−1ΛPs (5)

where s is any arbitrary random vector satisfying

E (ss′) = I (6)

and
E (sx′) = 0 (7)

P is an arbitrary Gram-factor satisfying

PP′ = I−Λ′Σ−1Λ (8)

(Students will help derive this formula in class.)
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

It is straightforward to verify, using matrix expected value algebra, that any ξ and δ
satisfying Equations 4–8 will fit the common factor model.
Once Λ is known, P can be constructed easily via matrix factorization methods. s is a
completely arbitrary random vector in the space orthogonal to that occupied by x.
Equation 4 shows that common factors are not determinate from the variables in the
current analysis.
There is an infinity of possible candidates for ξ.
Each has the same “determinate” component Λ′Σ−1x , but different “arbitrary
component” Ps.
These candidates for ξ each have the same covariance relationship with x, but possibly
differ substantially from each other.
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Another way of seeing that factor indeterminacy must exist is to use matrix partitioning
to re-express the common factor model.
Again assume orthogonal factors, and rewrite the factor model as

x = Λξ + δ =
[
Λ I

] [ ξ
δ

]
= Bk (9)

where B is a p × (p + m) matrix.
In general, B will have infinitely many orthogonal right unit matrices. An orthogonal right
unit is a matrix T such that BT = B, TT′ = I. Of course, since T 6= I, this implies that
T′k 6= k, and so there are infinitely many different sets of common and unique factors
that satisfy the common factor model for the same Λ and U.
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

Suppose that the entire population of observations consists of

X =



0.905 1.641 0.203 −1.401
−0.591 −0.598 −0.929 −0.192
−0.501 0.370 1.848 1.752
−0.488 −0.495 0.740 −0.402
−0.785 −1.101 −0.074 −0.794
−1.598 1.216 −0.404 −0.900

0.749 0.514 −1.703 1.084
−0.079 −0.343 −0.727 1.454

2.132 0.576 1.226 −0.001
0.255 −1.779 −0.182 −0.960



The above matrix may be conceptualized as the entire population of observations, in the sense
that each of the 10 row vectors has an equal probability of occurrence. So the matrix
represents the full set of outcomes in a discrete multivariate distribution where each of the 10
outcomes has probability of occurrence of 1/10.
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

In that case, we have

Σ =


1.00 0.20 0.15 0.10
0.20 1.00 0.12 0.08
0.15 0.12 1.00 0.06
0.10 0.08 0.06 1.00

 , Σ−1 =


1.066 −0.191 −0.132 −0.083
−0.191 1.054 −0.094 −0.060
−0.132 −0.094 1.034 −0.041
−0.083 −0.060 −0.041 1.016
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

Submitting the above Σ to any standard factor analysis program yields the following solutions
for λ and U2:

λ =


0.5
0.4
0.3
0.2

 , U2 =


0.75 0.00 0.00 0.00
0.00 0.84 0.00 0.00
0.00 0.00 0.91 0.00
0.00 0.00 0.00 0.96
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

In order to “construct” a set of common factor scores that agree with the factor model and
these data, we need, first of all, to find a component ps as described in Equations 6–8.

Since there is only one factor, p is a scalar and is equal to the square root of 1− λ′Σ−1λ.
After some tedious calculations, we can determine that p = 0.775. Hence, the indeterminate
part of any common factor is a deviation score vector ps such that X′s = 0, s′s/10 = 1, and
p = 0.775.

Infinitely many such vectors exist. To produce one, simply take a vector of random numbers,
convert it to deviation score form, multiply it by the complementary projector I− X(X′X)−1X′

to create a vector orthogonal to X, rescale it to the appropriate length, and multiply it by p.
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

Two such candidates for the “indeterminate part” of the common factor are

ps1 =



0.398
−0.284

0.314
1.949
−0.055
−0.794

0.608
−0.232
−0.636
−0.640


, ps2 =



0.258
−0.384

0.509
−0.759

1.743
−0.515

0.755
−0.908
−0.261
−0.437
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

The determinate part, also known as the “regression estimates” for the factor scores, is
computed directly as

XΣ−1λ =



0.742
−0.616

0.491
−0.241
−0.743
−0.485

0.245
−0.092

1.261
−0.563
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

Adding the determinate and indeterminate parts together, we construct two rather different
candidates for ξ. They are

ξ1 =



1.140
−0.900

0.176
1.708
−0.798
−1.278

0.853
−0.323

0.625
−1.203


, ξ2 =



1
−1

1
−1

1
−1

1
−1

1
−1
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The 3 Indeterminacy Problems Factor Indeterminacy

The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

These candidates for ξ correlate only .399 with each other. It is possible to construct valid
candidates for ξ that correlate much less.

Schönemann and Wang (1972) showed that, for orthogonal factors, assuming that Σ is a
correlation matrix (i.e., that the manifest variables are standardized), the minimum correlation
between equivalent factors are given by the diagonal elements of the matrix 2Λ′Σ−1Λ− I.
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The 3 Indeterminacy Problems
Factor Indeterminacy

ξ̂ ξ1ξ2

θ θ

Figure 1: Factor Indeterminacy

1
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The 3 Indeterminacy Problems
Factor Indeterminacy

Example (Factor Indeterminacy)

Imagine that each of the above ξi represent the intelligence scores of the individuals
manifesting the associated test scores in X. We discover that an individual manifesting score
pattern X′4 =

[
−0.488 −0.495 0.740 −0.402

]
has an intelligence score of 1.708 in one

version of the factor, and an intelligence score of −1 in another version. It is this singular fact,
first discovered by E. B. Wilson, that seemed to compromise, irretrievably, Spearman’s high
hopes for measuring g .
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